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Cone penetration test data has been widely used for determination of the threshold of seismically

induced soil liquefaction. However, possible inaccuracies in the collected data from case histories as

well as natural variability of parameters and other uncertainties associated with natural phenomenon

have yet prohibited a conclusive definition for this threshold.

Various classification techniques have been used to define the most reliable correlations. However,

available liquefied to non-liquefied data imbalance has caused learning bias to the majority class in the

learning model of the pattern recognition systems. This has adversely affected the outcome of such

approaches and in order to overcome this problem Support Vector Data Description (SVDD) strategy is

employed to ‘‘up sample’’ the minority data. In other words SVDD, which is robust against noisy

samples, is used to generate virtual data points for the minority class, bearing the same characteristics

as the non-virtual samples. In order to specify the most appropriate data range a sphere boundary

around the main body of the data are sought through an optimization process. The data inside the

obtained boundary are the target data and the ones outside it are the outliers or so-called ‘‘noise’’, to be

neglected. This procedure reduces the issue of class intermixture in the fringe zone and produces

relatively well defined class that then is fed into the Adaptive Neuro-Fuzzy Inference System (ANFIS)

classifier for determination of liquefaction potential. The predictions are then examined to evaluate the

reliability and validation of the overall technique and compared with other prediction methods using

confusion matrix. It is shown that the overall accuracy of the proposed technique is higher than all

previously proposed methods and only equal to the Support Vector Machine (SVM) technique.

Furthermore an improvement in the F-score of the non-liquefied data recognition has been achieved

in relation to all previously proposed methods.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Seismically induced liquefaction in saturated soils is a phe-
nomenon in which soil loses much of its strength or stiffness due
to rising pore water pressure for a generally short period of time
but nevertheless long enough for it to cause ground failure.
Determination of liquefaction potential of soils has become a
major concern and an essential criterion in the design process of
the civil engineering projects. Over the past 30 years, many
researchers have endeavored to present various methods for
prediction of liquefaction potential of soils.

Amongst in situ tests, many researchers have adapted Cone
Penetration Test (CPT) results as the basis for evaluation of
liquefaction potential of the test method (e.g. Juang et al., 2003;
Youd et al., 2001).
ll rights reserved.
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Yazdi).
Many researchers have developed charts or correlations for
liquefaction threshold based on a measure of soil resistance to
liquefaction (presented in the form of normalized cone tip
resistance qc,1) against a measure of seismically induced shear
stress, (cast in the context of Cyclic Stress Ratio). CSR is a function
of the earthquake magnitude, peak surface acceleration, the total
and effective overburden stress, and the depth of the source bed.
The above mentioned parameters are determined using the
following equations:

CSR¼ 0:65rd
sv0

s0v0

� �
amax

g

� �
ð1Þ

qc,1 ¼
pc

s0v

� �c

qc ð2Þ

where c is explained in details in (Moss et al., 2006).
A number of other researchers have considered a different

representation of input parameters (Rezania et al., 2011). These
parameters include the seismic cyclic stress ratio adjusted to an
earthquake magnitude of 7.5 (CSR7.5). Therefore for each case
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Nomenclature

amax maximum horizontal ground acceleration
rd shear stress reduction factor
CSR cyclic stress ratio
qc measured cone tip resistance
qc,1 normalized cone tip resistance
e center of hyper-sphere
R radius of hyper-sphere

xi input sample
g(x) mapping function
xi slack variable
s width of Gaussian kernel
C penalty coefficient
DBR data belonging ratio
c center of Gaussian membership
s standard deviation of cluster
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history the above parameters need to be adjusted to the earth-
quake magnitude of 7.5 through the use of magnitude scaling
factor (MSF) given by the following equations:

qc1N ¼
qc=100

ðs0v=100Þ0:5
ð3Þ

and CSR7.5 was calculated as:

CSR7:5 ¼ 0:65
sv0

s0v0

� �
amax

g

� �
rd

MSF

� �
: ð4Þ

MSF was calculated as:

MSF ¼
102:24

M2:56
w

 !
¼

Mw

7:5

� ��2:56

ð5Þ

where amax is the maximum horizontal acceleration caused by
earthquake; g is the acceleration of gravity; qc is the measured
cone tip resistance (kPa); Pa is the reference stress (1 atm is the
101.325 kPa); sv0 and s0v0 are total and effective vertical over-
burden stresses, respectively (kPa); rd is the shear stress reduction
factor and calculated as follows:

rd ¼ 1:0�0:00765z if zr9:15 m rd ¼ 1:174�0:0267z

rd ¼ 1:174�0:0267z if 9:15ozr23m ð6Þ

The MSF obtained from Eq. (5) represents the lower bound of
the range of MSF values recommended by the NCEER workshop
(Juang et al., 2003; Youd et al., 2001). Eqs. (5) and (6) are
commonly used by geotechnical researchers, although many
other formulae have been proposed for calculating rd and MSF
(Juang et al., 2003).

More intricate approaches based on Artificial Neural Networks
(ANN), probabilistic analyses have also been introduced recently.
A summary is presented in the Table 1.

The above mentioned approaches have all achieved various
degrees of success in prediction of liquefaction and each has
contributed to a better understanding of the system classification
process. The issue of data imbalance was initially noted by Cetin
et al. (2002) and Moss et al. (2006). However, a comprehensive
treatment of data imbalance as well as sampling bias has recently
been presented by Oommen et al. (2010). Maximum Likelihood
Table 1
Illustrative list of different applications having presented for soil liquefaction analysis.

Description of the work

Constitutive model for static liquefaction

Probabilistic models for the initiation of seismic soil liquefaction

CPT-Based probabilistic and deterministic assessment of in situ seismic soil liquefact

Simplified cone penetration test-based method for evaluating liquefaction resistance

An evolutionary based approach for assessment of earthquake-induced soil liquefact

displacement

Evaluation of liquefaction potential based on CPT results using evolutionary polynom

Validation and application of empirical liquefaction model (SVM)
Logistic Regression (MLLR) has been used in this recent article to
show the effect of sampling bias and it has been proven that when
sampling bias is reduced the predicted probability approaches the
actual probability irrespective of data imbalance.

In the present paper a different technique is employed to
reduce the effect of data imbalance as well as isolating the out of
range data points. The technique is called Support Vector Data
Description (SVDD) which has proven its capabilities in other
fields of science (Liu et al., 2011). Having removed the class
imbalance then Adaptive Neuro-Fuzzy Inference System (ANFIS)
is used as the classifier for determination liquefaction threshold.

It is understood that in addition to up-sampling (leading to
removal of data imbalance and sampling bias), density functions
have also an important role in improving predictions. However,
due to limitations this issue is not treated here.

In the following section initially a review of class imbalance
problems are presented, followed by definitions of the basic
concepts of SVDD and ANFIS. Then in Section 3 details of
liquefaction potential prediction is set out: introduction of CPT
data, modeling procedure using SVDD, SVDD-based up-sampling
procedure, system identification procedure using ANFIS and model
validation and comparison. Finally discussion and conclusion is
presented.
2. Background knowledge

2.1. Review of class imbalance problem

Imbalanced data are common in many machine learning
applications. In an imbalanced data set, the number of instances
in at least one class is significantly higher or lower than that in
other classes. Consequently, when classification models with
imbalanced data are developed; most classifiers are subjected to
an unequal number of instances in each class, thus failing to
construct an effective model. The class imbalance problem is
encountered in real-world applications of machine learning and
results in a classifier’s suboptimal performance. This goes back to
the place it is occurring; which is the data. The problem is that
there are some datasets that have an imbalance between the
Studied structure Authors

Constitutive modeling Mroz et al. (2003)

Probabilistic approach Cetin et al. (2002)

ion potential Probabilistic approach Moss et al. (2006)

of soils Artificial intelligence Juang et al. (2003)

ion and lateral Swarm intelligence Rezania et al. (2011)

ial regression Swarm intelligence Rezania et al. (2010)

Statistical pattern

recognition

Oommen et al. (2010)
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numbers of instances in different classes, i.e. the number of
instances in some classes is more than other classes. This
imbalance could occur with different degrees; but usually a high
degree is noteworthy (He and Garcia, 2009).

Class imbalance is relevant in some valuable datasets such
as medical diagnosis, fraud detection, oil spill detection,
mine classification etc. Imbalance may be intrinsic or extrinsic
(He and Garcia, 2009). Intrinsic imbalance is related to the nature
of the data but extrinsic occurs due to external interferences such
as low storage and/or time. Class imbalance is studied both in two
class and multi class classification. In two class classification the
classes with less data are called the minority class and the other
class is the majority class.

Previous algorithms for handling class imbalance could be
categorized into two main groups. The first group focuses on
modifying the classification method to recover the imbalance
problem; modifications of SVM (Batuwita and Palade, 2010) and
C4.5 decision tree (Quan et al., 2006) could be placed in this
category. On the other hand, the second group of algorithms
processes the data to reduce the imbalance. This category of
algorithms could be considered as a preprocessing step before the
classification which is the main process. The main method used for
preprocessing is sampling. Sampling algorithms follow two different
approaches, under sampling and oversampling. Under-sampling
methods aim to decrease the size of the majority class. Easy
Ensemble (Liu et al., 2006), Near-Miss (Zhang and Mani, 2003) and
RUSBoost (Seiffert et al., 2010) are some good algorithms.

The second approach for preprocessing using data sampling, is
oversampling. On the contrary to under sampling, oversampling
algorithms tend to increase data in the minority class. Over-
sampling methods could be categorized into two more specific
groups which are synthetic and non-synthetic. In the first cate-
gory synthetic non-existent data are added to the original data in
the minority class, whereas in the second category data in the
minority class is replicated. Synthetic oversampling has been
studied more thoroughly than the non-synthetic one. Chawla
et al. (2002) proposed SMOTE; which is a synthetic oversampl-
ing method based on generating data in the neighbors of data
using k-NN with a random distance. This algorithm has gained
significant success in different applications. Different improve-
ments have been proposed for SMOTE; Han et al. (2005) propose
Borderline SMOTE, CE-SMOTE was proposed by Chen et al. (2010),
the author of SMOTE proposed SMOTE Boost (Chawla et al., 2003)
which is a combination of SMOTE and the boosting procedure.

Non-synthetic oversampling is another category of methods in
which data are replicated, that is, no synthetic data are generated.
Two algorithms can be defined in this category; Random Over-
sampling (RO) by Drummond and Holte (2003) and Cluster-Based
Sampling (CBS) (Jo and Japkowicz, 2004). In RO data in the
minority class is replicated randomly to a specific ratio. The
second algorithm CBS, uses clustering techniques for oversam-
pling. CBS clusters the minority and majority class using a specific
number of clusters (k). Using the cluster information the data in
minority and majority classes are balanced equally. One issue to
consider is that sampling methods aim to alleviate the class
imbalance problem in supervised classification algorithms. Other
classifiers such as SVM (Bae et al., 2010), Random Forest (Gu et al.,
2007) and ANN (Bae et al., 2010) have also made use of various
sampling methods. A comprehensive review on sampling bias
may also be found in Anderson and Gonzalez (2011).

The CPT database has 182 case histories of which 139 are from
liquefied sites and 43 are from non-liquefied sites. This database
which has been compiled by Moss et al. (2006) falls within the
category of imbalanced datasets since the ratio of liquefied to non-
liquefied instances is over 3. Moss et al. (2006) noticed this
imbalance and by using Bayesian updating optimization attempted
to overcome this deficiency; they modified the likelihood function
by a weighting factor Wnon-liquefied/Wliquefied¼1.5 based on
(Cetin et al., 2002) and the consensus of an expert panel specifically
set up for reviewing the CPT dataset.

2.2. Support vector data description (SVDD)

Support vector data description is a data description method that
can give the target dataset a spherically shaped description and be
used for detection of outliers. In recent years, the problem of data
description or one-class classification has received much attention
(Tax and Duin, 1999). In domain description the task is to give a
description of a training set of objects and to detect which (new)
objects resemble this training set. This description should cover the
class of objects represented by the training set, and ideally should
reject all other possible objects in the object space. SVDD was first
presented by Tax and Duin and later further developed with
extensions and a more thorough treatment (Tax and Duin, 2004).
The SVDD has found a wide range of applications: SVDD has been
used for detection of outlier or otherwise known as uncharacteristic
data points in a data set, as well as detection of an anomaly
(Liu et al., 2011). It is proposed here to use SVDD for special
classification problems, where one class is severely under sampled,
while the other class(es) are well-sampled.

The basic idea of SVDD is to map the original normal training
data both nonlinearly and implicitly into a potentially much higher
inner product space (feature space), and to search for a hyper sphere
with minimal volume containing most of the mapped training data.
A new object, which is subjected to the same mapping, is recognized
as a target if its image lies inside the hyper sphere; otherwise, it is
an outlier. Several key variables such as radius and center of the
hyper sphere are involved in the search of the hyper sphere.

The liquefaction/non-liquefaction data classification which is
presented in the following section is a clear illustration of SVDD
concept and procedure.

Let xi(i¼1,y,n) be p-dimensional training samples belonging to
one class. We consider approximating the class region by the
minimum hyper-sphere with center e¼(e1,e2,y,ep)T and radius R
in high dimensional feature space (HDS), excluding the outliers.
This goal is formulated as a constrained convex optimization
problem

min
R,e,x

R2
þC

Xn

i ¼ 1

xi

Subject to
JgðxiÞ�eJ2rR2

þxi, i¼ 1,. . .,n

xiZ0, i¼ 1,. . .,n

(
ð7Þ

where g(x) is the mapping function that maps x into a high
dimension space (HDS), x¼(x1,y,xn)T and xi is the slack variable
of ith training sample and C is a constant which determines the
trade-off between the hyper-sphere volume and outliers. The
Lagrangian dual form of (7) is as follows:

max
d,g

LðR,e,x,a,gÞ

Subject to ai,giZ0, i¼ 1,. . .,n ð8Þ

where a¼(a1,y,an)T, g¼(g1,y,gn)T and

L R,e,x,a,g
� �

¼ inf R2
þC

Xn

i ¼ 1
xi�

Xn

i ¼ 1
aiðR

2
þxi�gðxiÞ

T gðxiÞ

n
þ2eT gðxiÞ�eT eÞ�

Xn

i ¼ 1
gixi

o
ð9Þ

For the optimal solution, the following conditions are satisfied

@L

@R
¼ 0-

Xn

i ¼ 1

ai ¼ 1 ð10Þ



Fig. 1. Mapping of dataset X by g into a higher dimensional space.
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@L

@e
¼ 0-e¼

Xn

i ¼ 1

aigðxiÞ ð11Þ

@L

@x
¼ 0-ai ¼ C�gi, i¼ 1,. . .,n ð12Þ

aiðJgðxi�eÞJ2
�R2
�xiÞ ¼ 0, i¼ 1,. . .,n ð13Þ

gixi ¼ 0, i¼ 1,. . .,n ð14Þ

Using the above conditions, L(R,e,x,a,g) is transformed to

Xn

i ¼ 1

aiKðxi,xiÞ�
Xn

i ¼ 1

Xn

j ¼ 1

aiajKðxi,xjÞ ð15Þ

where K(xi,xj)¼g(X)Tg(xj)is the kernel, and the training vectorsx0is
are mapped into a higher dimensional space by function g, as
shown in Fig. 1.

From (8) and (12) we have 0rairC. So, the Lagrangian dual
form of (7) can be restated as follows:

maxa
Xn

i ¼ 1

aiKðxi,xiÞ�
Xn

i ¼ 1

Xn

j ¼ 1
Kðxi,xjÞ

Subject to

Pn
i ¼ 1 ai ¼ 1,

0rairC, i¼ 1,. . .,n

(
ð16Þ

This is a conventional quadratic program and can be solved easily.

From (7), JgðxiÞ�eJ2
¼ Kðxi,xiÞ�2

Pn
j ¼ 1ajKðxi,xjÞþ

Pn
j ¼ 1

Pn
k ¼ 1 aiak

Kðxj,xkÞ and from (13) if ai40,Kðxi,xiÞ�2
Pn

j ¼ 1 ajKðxi,xjÞþ
Pn

j ¼ 1Pn
k ¼ 1 ajakKðxj,xkÞ ¼ R2

þxi.

From (12) if aioC, gi40. So, from (14) we have xi¼0.So, if
0rairC.

R2
¼ Kðxi,xiÞ�2

Xn

j ¼ 1

ajKðxi,xjÞþ
Xn

j ¼ 1

Xn

k ¼ 1

aiakKðxj,xkÞ ð17Þ

Finally, the unknown datum x is inside the hyper-sphere if
JgðxÞ�eJ2rR2 or equivalently if

Kðx,xÞ�2
Xn

iA sv

aiKðx,xiÞþ
Xn

iA sv

Xn

jA sv

aiajKðxi,xjÞrR2
ð18Þ

where SV the set of indices of training is samples whose aa0.
Data Belonging Ratio (DBR) is defined as:

DBR¼ R2
�JgðxÞ�eJ2

ð19Þ

The Gaussian kernel Kðx,yÞ ¼ expð�Jx�yJ=s2Þ is used.

2.3. Neuro-fuzzy inference system

Recently, there has been a growing interest in combining ‘‘Artifi-
cial Neural Networks’’ (ANN) and ‘‘Fuzzy Interface System’’, and as a
result; neuro-fuzzy computing techniques have evolved. Neuro-fuzzy
systems are fuzzy systems, which use neural networks theory in
order to determine their properties (fuzzy sets and fuzzy rules) by
processing data samples (Mitra and Hayashi, 2000). Neuro-fuzzy
integrates the merits of both neural networks and fuzzy systems in
a complementary way to overcome their disadvantage. The fusion of
neural network and fuzzy logic in neuro-fuzzy models possess both
low-level learning and computational power of neural networks and
advantages of high-level human like thinking of fuzzy systems.
Adaptive Neuro-Fuzzy Inference System (ANFIS) model combined
the neural network adaptive capabilities and the fuzzy logic qualita-
tive approach, initially introduced by Jang (1993).

It has attained its popularity due to a broad range of useful
applications in such diverse areas in recent years as optimization
of fishing predictions (Nuno et al., 2005), vehicular navigation
(Noureldin et al., 2007), identification of the turbine speed dynamics
(Kishor et al., 2007), radio frequency power amplifier linearization
(Lee and Gardner, 2006), image de-noising (Qin and Yang, 2007; C-
ivicioglu., 2007), prediction in cleaning with high pressure water
Daoming and Jie (2006), sensor calibration (Depari et al., 2007), fetal
electrocardiogram extraction from ECG signal captured from mother
(Assaleh., 2007), identification of normal and glaucomatous eyes
(Huang et al., 2007). All these works show that ANFIS is a good
universal approximated, predictor, interpolator and estimator and
demonstrate that ANFIS has the approximation capabilities of neural
networks and any non-linear function of several inputs and outputs
can be easily constructed with ANFIS. The summarized advantage of
the ANFIS technique is listed below.
�
 Real-time processing of instantaneous system input and out-
put data. This property helps the use of this technique for
many operational research problems.

�
 Offline adaptation instead of online system-error minimiza-

tion, thus easier to manage and no iterative algorithms are
involved.

�
 System performance is not limited by the order of the function

since it is not represented in polynomial format.

�
 Fast learning time.

In the following section a detailed description of ANFIS
architecture is presented.

2.4. Adaptive neuro-fuzzy inference system (ANFIS) architecture

Neuro-fuzzy systems are fuzzy systems, which use NNs to
determine their properties (fuzzy sets and fuzzy rules) by processing
data samples. ANFIS has been proven to have significant results in
modeling nonlinear functions. In ANFIS, the membership functions
(MF) are extracted from a data set that describes the system
behavior. The ANFIS learns features in the data set and adjusts the
system parameters according to given error criterion. In a fused
architecture, NN learning algorithms are used to determine the
parameters of fuzzy inference system.

A typical architecture of ANFIS is shown in Fig. 2, in which a
circle indicates a fixed node, and a square indicates an adaptive
node. For simplicity, we consider two inputs x, y and one output z

in the fuzzy inference system (FIS). The ANFIS used in this paper
implements a first-order Sugeno fuzzy model. Among many fuzzy
inference systems, the Sugeno fuzzy model is the most widely
used for its high interpretability and computational efficiency,
and built-in optimal and adaptive techniques. For example for a
first-order Sugeno fuzzy model, a common rule set with two fuzzy
if-then rules can be expressed as (20).

Rule 1 : If x is A1 and y is B1, then

z1 ¼ p1xþq1yþr1

Rule 2 : If x is A2 and y is B2, then

z2 ¼ p2xþq2yþr2 ð20Þ



Fig. 2. ANFIS architecture (P, N, S are defined in (23), (24), (26) respectively).

Fig. 3. The proposed structure.
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where Ai,Bi (i¼1,2) are fuzzy sets in the antecedent, and pi,qi,

ri (i¼1,2) are the design parameters that are determined during
the training process. As in Fig. 2, the ANFIS consists of five layers.

Layer 1, every node i in this layer is an adaptive node with a
node function

O1
i ¼ mAi

ðxÞ, i¼ 1,2

O1
i ¼ mBi

ðyÞ, i¼ 3,4 ð21Þ

where x, y are the input of node i, mAi
ðxÞ and mBi

ðyÞ can adopt any
fuzzy membership function (MF). In this paper, Gaussian MFs are
used

gaussianðx,c,sÞ ¼ e�ð1=2Þððx�cÞ=sÞ2 ð22Þ

where cis center of Gaussian membership function and s is
standard deviation of this cluster.

Layer 2, every node in the second layer represents the ring
strength of a rule by multiplying the incoming signals and
forwarding the product as

O2
i ¼oi ¼ mAi

ðxÞmBi
ðyÞ, i¼ 1,2 ð23Þ

Layer 3, the ith node in this layer calculates the ratio of the ith
rule’s ring strength to the sum of all rules ring strengths

O3
i ¼oi ¼

oi

o1þo2
, i¼ 1,2 ð24Þ

where oi is referred to as the normalized ring strengths.
Layer 4, the node function in this layer is represented by

O4
i ¼oizi ¼oiðpixþqiyþriÞ, i¼ 1,2 ð25Þ

where oi is the output of layer 3, and {pi,qi,ri} are the parameter
set. Parameters in this layer are referred to as the consequent
parameters.

Layer 5, the single node in this layer computes the overall
output as the summation of all incoming signals

o5
i ¼

X2

i ¼ 1
oizi ¼

o1z1þo2z2

o1þo2
ð26Þ

It is seen from the ANFIS architecture that when the values of
the premise parameters are fixed, the overall output can be
expressed as a linear combination of the consequent parameters:

z¼ ðo1xÞp1þðo1yÞq1þðo1Þr1þðo2xÞp2þðo2yÞq2þðo2Þr2 ð27Þ

The hybrid learning algorithm (Nuno et al., 2005; Huang et al.,
2007) combining the least square method and the back propaga-
tion (BP) algorithm can be used to solve this problem. This
algorithm converges much faster since it reduces the dimension
of the search space of the BP algorithm. During the learning
process, the premise parameters in layer 1 and the consequent
parameters in layer 4 are tuned until the desired response of the
FIS is achieved. The hybrid learning algorithm has a two-step
process. First, while holding the premise parameters fixed, the
functional signals are propagated forward to layer 4, where the
consequent parameters are identified by the least square method.
Second, the consequent parameters are held fixed while the error
signals, the derivative of the error measure with respect to each
node output, are propagated from the output end to the input
end, and the premise parameters are updated by the standard BP
algorithm.
3. The proposed approach

In this paper it is proposed to use Adaptive Neuro Fuzzy
Inference System (ANFIS) as the identification technique for
determination of the liquefaction threshold. MATLAB have been
used for programming ANFIS and SVDD using a modified code,



J. Sadoghi Yazdi et al. / Computers & Geosciences 44 (2012) 10–23 15
originally proposed by Tax (Tax and Duin, 1999, 2004). ANFIS is
trained using CPT based liquefaction case histories. However,
before feeding the raw data into the class identification proce-
dure, a number of steps must be taken to remove the data
imbalance as well as isolating the so-called ‘‘noise’’ or outlier
data sample methodologically. The organization chart for the
proposed approach is presented in Fig. 3.

The process includes feeding the CPT data into the SVDD to
produce various descriptions of data ranges by applying different
data region description parameters (s, C). For each of the
determined minority class data sphere, the appropriate ‘‘up
sampling’’ is carried out and then the ANFIS classifier is employed
to determine the optimum data description providing the best
possible recognition rate.
3.1. CPT data

The data used in this study is adapted from reference (Moss et al.,
2006) and include 139 liquefied and 43 non-liquefied records from
18 different earthquakes spanning over four decades. The earth-
quakes included are; 1964 Niigata, 1968 Inangahua, 1975 Haicheng,
1976 Tangshan, 1977 Vrancea, 1979 Imperial Valley, 1980 Mexicali,
1981 Westmorland, 1983 Nihonkai-Chubu, 1983 Borah Peak, 1987
Elmore Ranch, 1987 Superstition Hills, 1987 Edgecumbre, 1989
Loma Prieta, 1994 Northridge, 1995 Hyogoken-Nambu (Kobe),
1999 Kocaeli, and 1999 Chi-Chi earthquakes.
Fig. 4. Data Scatter of CPT based case histories in (CSR7:5 ,qc1N ,s0v) space. (a) View i

(d) view in (qc1N,CSR7.5).
Moss et al. (2006) have presented the above data in (CSR, qc,1)
space and have shown that similar to all previous works, class
intersection exists. This class intersection may be attributed to
uncertainties associated with physical measurements and other
unknown factors and shall prohibit definition of a sharp and clear
cut threshold. Recently Rezania et al. (2011), introduced a three
dimensional space (CSR7.5, qc1N and s0v) mainly to alleviate the
class intersection issue (Rezania et al., 2011). However, feeding
the above data into this newly proposed space reveals that even
this attempt did not totally remove the class intersection either as
is evident from different views of this space (Fig. 4). Hence in this
study it is decided to revert to the (CSR, qc,1) space and the issue of
class imbalance is thus treated in this space.

The data in the minority class (non-liquefied records) is ‘‘up
sampled’’ by over three folds to overcome the imbalance. The best
data description has been achieved by a trial and error process.
The influencing parameters in the SVDD and the procedure by
which parameter tuning is achieved are described in the next
sections.
3.2. Modeling procedure using SVDD

The modeling procedure is demonstrated graphically in Fig. 5.
The liquefaction data shown in Fig. 5(a) is fed into SVDD (according
Section 2.2) and a data region defined by model description
parameters (s, C) is obtained (Fig. 5(b). The non-liquefaction model
is similarly developed (Fig. 5(c and d)).
n third dimension (CSR7:5 ,qc1N ,s0v), (b) view in ðs0v ,CSR7:5Þ, (c) view in ðs0v ,qc1NÞ,



Fig. 5. (a) Liquefied data, (b)obtained surface using SVDD for liquefaction data, (c) non-liquefied data, (d) obtained surface using SVDD for nonliquefaction data.
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The SVDD encloses liquefaction/non-liquefaction regions and
thereby detects outliers. Each SVDD for liquefaction and non-
liquefaction can be used for determination of status of input
sample relative to the obtained enclosed region; inside/outside/
on-boundary is status of input samples. The status is reported
respectively with negative/positive/zero values (more details of
SVDD operation appears in Section 3.3).

Fig. 5(a) liquefied data (b) obtained surface using SVDD for
liquefaction data (c) non-liquefied data (d) obtained surface using
SVDD for non-liquefaction data.
3.3. Discussion on SVDD parameters

There are two parameters s, C (width parameter, penalty
coefficient) in the SVDD which influences the outreach and the
extent of the data domain. The influence of the two parameters to
describe the data classification with Gaussian kernel function is
shown in Fig. 6. Gaussian kernels with different widths s
(s¼0.05, 0.15, 0.25) and different penalty values C are combined
in these figures. It must be noted that the penalty values for the
two data classes are assumed to be the same (i.e. C1¼C2¼0.05,
0.15, 0.5, 1)

It is evident that for small values of the width parameter ‘‘s’’,
which represents weaker and more limited correlations between
neighboring data, multiple isolated regions are detected, whereas
by increasing its value a unified data zone with wider data class
sphere is described.
The influence of the penalty coefficient ‘‘C’’ on inclusion of
outliers is also presented in these figures. The smaller the value
of ‘‘C’’, the tighter the region becomes by reducing the weight of
outlier data. It is noteworthy that for a constant width parameter,
the penalty coefficient determines the extent of data range and
thus the noise data. The optimized description is determined by
comparison of recognition rates obtained through ANFIS classifier.
In other words, the strength of recognition pattern by ANFIS is set
as a criterion for tuning the SVDD parameters.
3.4. SVDD-based up sampling CPT data

In view of the fact that the ratio of liquefied sample points to
non-liquefied samples is over 3, the imbalance between different
data classes will affect over pattern recognition procedure. There-
fore, in the non-liquefied class region identified by the SVDD
(as shown in Fig. 5(d)) data are generated.
3.5. Data generation procedure

Monte Carlo and the SVDD models are jointly used to generate
the data needed to remove the imbalance. A probability density
function is generated using Monte Carlo for initial data generation
in accordance to the determined center and the width of
the minority class region. Then all SVDD models are used
for acceptance or rejection of the generated data. In order to



Fig. 6. Influence of different parameters s, Ci (i¼1, 2) on the SVDD with Gaussian kernel function. Three Gaussian kernels widths s (s¼0.05, 0.15, 0.25) and different

values for Ci (Ci ¼0.05, 0.15, 0.25, 1) are combined. Training data set contains two classes of objects size for liquefaction and non-liquefaction is 139 and 43 respectively.
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clarify this procedure, an example of this is provided for
s¼0.15 and C¼0.15 in Fig. 7. It is evident that three zones
exist; a liquefaction zone (LZ), a non-liquefaction zone (NLZ)
and a fringe zone which includes intersection of the two sets
(LZ\NLZ).

A sample point within the region boundary has a value less
than zero, according to Eq. (18), DBR of a data point on the
boundary is zero and for a data point outside the boundary
this ratio is greater than zero. Data points A and B have
percentage belonging ratios of (3.7%) and (�2.93%) respectively.
Therefore, the data point A is an outlier and thus neglected for the
up-sampling process.

Having defined the data region, the data generation is
carried out on a Monte Carlo bases in the minority class region
(i.e. NLZ) excluding the fringe zone NLz-(NLz\Lz). The belnging
ratio for the generated data must be less than zero for zone NLZ

and greater than zero for zones LZ. Fig. 8 shows the up-
sampled data.
3.6. Classification using ANFIS

In this study, ANFIS classifier (which was discussed in Section 2.3)
is used to predict soil liquefaction. K-fold cross-validation is used for
training and testing of the model. In K-fold cross-validation the data
are randomly split up into K partitions and then (K�1) folds are used
for training and the remaining fold is used for validation. This process
is repeated K times, leaving one different fold for evaluation each time
(Fig. 9). The ability of each model to predict is estimated by
calculating errors on each test instances of each K fold. The advantage
of K-fold cross validation is that all the examples in the data set are
eventually used for both training and validation, yet for each example
in the data set, training and validation are implemented indepen-
dently (Oommen et al., 2010).

In this study ANFIS main parameters (c,s) have been deter-
mined to maximize generality. Ten folds were used in the K-fold
cross-validation. The results of training and testing based on
up-sampled data are shown in Table 2.



Fig. 7. Liquefaction, non-liquefaction and interference zone.

Fig. 8. (a) CPT based case histories in CSR�qc1 space and (b) up sample CPT Data.

Fig. 9. K-fold cross-validation method for training and testing CPT data.
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3.7. Recognition rate

At this stage the recognition rates produced by ANFIS are
compared for various SVDD parameters. It should be noted that
except for s¼0.05 values which give a discrete and multiple
segment data boundaries, the other values have been tried for
determination of best recognition rate. ANFIS is run ten times for
two Gaussian kernels widths s (s¼0.15, 0.25) and four values
C (C¼0.05, 0.15, 0.25, 1) as described in the previous section and
the mean values of train and test procedure is evaluated.
The outcome is shown in Fig. 10.

3.8. Parameter tuning procedure

Based on the values of recognition rates obtained by ANFIS
classifier, it can be noted that the most accurate predictions are
obtained using C¼0.25, s¼0.15 and C¼1, s¼0.15 which are not
much different, and except for the higher test values for the first
combination they can be assumed to produce the results with the
same kind of accuracy. Here the former combination is used since
it gives a slightly better test values.



Table 2
Recognition rate for a single run (C¼0.15, s¼0.15).

Fold number 1 2 3 4 5 6 7 8 9 10

Train 92 92.8 92 92.83 91.6 92.4 92 92.43 92.4 92.4

Test 96.43 85.71 89.29 88.89 100 89.29 92.86 88.89 89.29 89.29

Fig. 10. Comparison of average of recognition rate for two Gaussian kernels widths s (s¼0.15, 0.25) and four C values (C ¼0.05, 0.15, 0.25, 1).

Table 3

Value of a1i, b1i , a2i, b2i , an

i , bn

i , cn

i .

I a1i b1i a2i b2i an

i bn

i cn

i

1 2.628 6.33 0.0562 0.21 0.0481 �6.72 2.187

2 2.628 17.0745 0.0562 0.38 �0.0262 �0.954 �0.167

3 2.628 4.8 0.0562 0.37 0.0066 �0.299 1.119

4 2.628 16.597 0.0562 0.1986 0.0209 �1.675 �1.041

5 2.628 6.45 0.0562 0.13 �0.2454 11.55 �0.465

6 2.628 2.66 0.0562 0.13 �0.2709 16.09 �0.902

7 2.628 22.84 0.0562 0.225 0.00049 0.6018 �1.141

8 2.628 16.382 0.0562 0.5161 �0.2084 2.202 1.692
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3.9. Mathematical definition of the threshold

The methodology of defining the liquefaction threshold (f) by
ANFIS classifier is described below.

f ðqc,1,CSRÞ ¼
X8

i ¼ 1

oizi=
X8

i ¼ 1

oi ð28Þ

where oi and zi are obtained as follows,

oiðqc,1,CSRÞ ¼ exp �
Jqc,1�b1iJ

a1i

� �
exp �

JCSR�b2iJ

a2i

� �
ð29Þ

ziðqc,1,CSRÞ ¼ an

i qc,1þbn

i CSRþcn

i ð30Þ

where a1i, b1i, a2i, b2i, an

i , bn

i and cn

i are as following Table 3.

f ðqc,1,CSRÞ40, Liquefaction occurs

f ðqc,1,CSRÞo0, Non�Liquefaction occurs

(
ð31Þ

In order to demonstrate the effect of data imbalanced on ANFIS
predictions, the prediction of ANFIS classifier based on both sets
of imbalanced as well as up-sampled (or balanced) data sets are
presented in Fig. 11.

The average recognition rate obtained by 10-fold cross-valida-
tion method for each run is shown in Fig. 12. For example in the
first run, the average recognition rates of train and test data for
imbalance data are 87.42% and 88.7% respectively, whereas for
up-sampled data the average recognition rates for train and test
data increase to 92.36% and 92.83% respectively.
4. Model validation

In order to evaluate the performance of the proposed classifier
and develop a quantitative basis for comparison with other
methods, a number of metrics are utilized. These include ‘‘overall
accuracy’’, ‘‘precision’’, ‘‘recall’’ and ‘‘F-score’’. These metrics can
be computed from the elements of a ‘‘confusion matrix’’, where
each column of the matrix represents the instances in a predicted
class, while each row represents the instances in an observed
class (Table 3).

The instances where liquefaction has or has not occurred and they
have correctly been predicted (i.e. row and column indices equal) are
denoted as ‘‘True-Positive (TP)’’ and ‘‘True-Negative (TN)’’. These
indices form the diagonal of the matrix where the classifier has
proven effective in its recognition task. Whereas the off-diagonal
indices indicate the instances of misclassification; that is where
liquefaction has or has not occurred but the classifier has predicted



Fig. 11. ANFIS Curve for prediction of liquefaction based imbalance and balanced data.

Fig. 12. Recognition rate for testing and training imbalance and balance data.
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the converse. They are denoted are ‘‘False-Negative (FN)’’ and ‘‘False-
Positive (FP)’’.

The accuracy of the classifier may then be defined as:

Overall accuracy¼ ðTPþTNÞ=ðTPþTNþFPþFNÞ ð32Þ

Overall accuracy is an overall measure of the capability of the
classifier to predict the correct result. However, it is not necessarily
an accuracy measure of each class individually. Precision and Recall
are better measures of classifier performance in each class and are
defined as:

Precision¼ p¼ TP=ðTPþFPÞ ð33Þ

Recall¼ R¼ TP=ðTPþFNÞ ð34Þ

These two metrics are especially useful where class imbalance
exists and in this article the improvement achieved by SVDD in
removal of the class imbalance are shown using these two
metrics.

Finally, F-score is a weighted harmonic mean of precision and
recall and combines the two measures to give a single evaluation
metric.

Fb ¼ ð1þb
2
ÞðP:RÞ=ðb2:PþRÞ ð35Þ

where b¼measure of the importance of recall to precision and
can be defined by the user for a specific project.

The above metrics have been evaluated using the dataset
presented by Moss et al. (2006) in the approaches proposed by
different researchers listed below in Table 4.

Before examining the performance of each approach it must be
noted that Rezania et al. (2010), introduced three sub-categories
for different soil types and thus the above metrics have been
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calculated separately for each soil type and in order to form a
common basis for comparison weighted averages of the metrics
have been calculated according to the following formula:

OAEPR ¼
dataSP

datatotal
OASPþ

dataSM

datatotal
OASMþ

dataSM�ML

datatotal
OASM�ML ð36Þ

The overall performance of the SVDD up-sampled ANFIS
technique is evidently better than many of the previously
proposed approaches and is partially equaled by SVM (see
discussion below).

In order to examine the effect of sampling bias on the overall
accuracy and F-score of both data class, various ratios of non-
liquefied to liquefied data ranging 0.5–2 were also tested. The
results are presented in Fig. 13.

It is evident that optimum predictions are obtained when
sampling bias approaches unity (Table 5).
Table 4
Confusion matrix.

Observed Predicted

Yes No

Yes True-positive False-negative

No False-positive True-negative

Fig. 13. Effect of non-liquefied/liquefied data ratio on OA and F-
5. Discussion

The following points can be deduced from the above results:
�

Sco
As shown in Fig. 12 the recognition rates of up-sampled CPT
data have increased on average by about 4%. Furthermore,
recognition rates are more consistent during different runs
(see Fig. 12), which indicate a more stable identification
procedure.

�
 The overall accuracy of the proposed method ranks higher

than most of the others methods and is only equal to the SVM.

�
 Due to the improvement achieved by up sampling, F-score of

the minority class (i.e. non-liquefaction) is the highest value
achieved to date.

�
 The ratio of Precision to Recall is a measure of centrality of

threshold in the fringe (intersection) zone. That is, the closer
the ratio is to unity the more central the threshold is in the
fringe zone. According to the results obtained by the
up-sampled ANFIS, both Precision and Recall of liquefied and
non-liquefied data are very close to each other, whereas the
SVM has not been as successful, especially in the minority
(non-liquefied) class. This proves the enhanced efficiency
gained by up-sampling.

�
 As can be seen from Fig. 11, up-sampling has prevented over-

fitting of the data and thus has caused a more general
description. Imbalanced data had caused ANFIS to try to fit
re for five consecutive run (cluster center’s range¼0.5).



Table 5
Various estimates of the predictive performance of the CPT-Based deterministic models: (1) OA and (2) recall, precision, and F-score for both liquefaction

and non-liquefaction occurrences.

Approach Data set of Moss et al. 2006

OA Liquefied Non-liquefied

R P F-score R P F-score

Youd et al. 2001 Simplified procedure 0.846 0.877 0.917 0.897 0.744 0.653 0.695

Moss et al. 2006 THL¼0.15 0.879 0.985 0.872 0.925 0.534 0.92 0.676

THL¼0.5 0.857 0.913 0.9 0.907 0.674 0.7 0.69

Oommen et al 2010 SVM 0.89 0.978 0.888 0.931 0.604 0.896 0.722

Rezania et al. 2010 EPR (SP) 0.9 1 0.889 0.941 0.5 1 0.667

EPR (SM) 0.84 0.939 0.869 0.903 0.462 0.667 0.545

EPR (SM-ML) 0.556 0.294 1 0.455 1 0.455 0.625

EPR (weighted average) 0.808 0.854 0.892 0.843 0.548 0.69 0.577

Rezania et al. 2011 EPR (three dimensional space) 0.841 0.878 0.91 0.894 0.721 0.646 0.681

ANFISup-sample 0.89 0.942 0.916 0.926 0.721 0.795 0.756
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the description onto the minority class, whereas un-sampled
data has led to a more general description.

6. Summary and conclusions

Liquefaction in soil is one of the major causes of concern in
geotechnical engineering. The cone penetration test has proven to
be an effective tool in characterization of subsurface conditions
and analysis of different aspects of soil behavior, comprising
estimating the potential for liquefaction at a specific site.

The CPT database used in this study has 182 case histories of
which 139 are from liquefied sites and 43 are from non-liquefied
sites. The ratio of the data in the two classes indicates that serious
data imbalance exists. The main scope of this study is to imple-
ment Adaptive Neuro-Fuzzy Inference System for the prediction
of liquefaction threshold based on CPT Up-Sampled data. For
identification of liquefaction and non-liquefaction regions, Sup-
port Vector Data Description method with suitable parameters
(C and s) has been used.

ANFIS classifier was used to predict soil liquefaction. For
training and testing data model, K-fold cross-validation was used.
It is shown that up-sampling has a positive bearing on recognition
rates of ANFIS classifier by about 4%.

Furthermore, the performance of the overall technique has
been compared against other newly proposed method. Certain
metrics that exist in predictive analytics have been used as
measures of classifier accuracy and generality. These have been
invoked and calculated to form a basis of comparison. It is shown
that the proposed approach has the highest overall accuracy equal
only to SVM method simultaneously with generality in both
classes of data.

Our future work shall focus on the development of kernel
density estimation for inclusion of risk analysis.
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